国产精品日韩高清_欧美日韩1区2区3区_在线精品国产亚洲_国产精品成人一区二区网站软件_美国三级日本三级久久99_美女脱光内衣内裤视频久久网站_国精品**一区二区三区在线蜜桃_国产成人精品影院_国产麻豆视频一区_亚洲毛片网站

歡迎進(jìn)入濟(jì)南成全生物科技有限公司網(wǎng)站!
18953165089
技術(shù)文章

articles

當(dāng)前位置:首頁(yè)  /  技術(shù)文章  /  SPR靈敏度和檢測(cè)限制

SPR靈敏度和檢測(cè)限制

更新更新時(shí)間:2023-07-19

瀏覽次數(shù):1057

SPR Sensitivity and Detection Limit
When selecting a Surface Plasmon Resonance (SPR) instrument, an obvious question to ask is: What is the sensitivity of the instrument? This seemingly simple question does not have a straightforward answer. The confusion is partially due to the fact there is simply no perfect way to define the sensitivity, and also partially due to the inaccurate use of this term by some vendors. This technical note describes some of the most commonly used terms for defining SPR sensitivity. The goal is to provide SPR users with a guideline to determine if a particular definition is useful for his/her application, and to compare different instruments in a meaningful way.

Angular Sensitivity
The most popular SPR detection scheme uses the so-called Kretchmann configuration and measures the angle of incident light at which surface plasmon resonance takes place (see Figure 1 below). The shift of the resonance angle provides a sensitive measurement of a molecular binding event onto the sensor surface or a change in the index refraction of the fluid medium near the sensor surface. For this reason, the minimum detectable angular shift, in unit of degree, may be used to describe the sensitivity. However, an SPR instrument with the best angular sensitivity does not always mean that it has the best sensitivity in terms of detecting molecular binding, which is referred to as surface sensitivity.

FIG. 1 Left: A typical SPR setup. An incident light is directed onto a SPR sensor chip via a prism, and the reflected beam is detected via a photodetector or imager. At an appropriate angle (resonance angle), the incident light excites the surface plasmons in the sensor chip (metal film) and the intensity of the reflected light drops to a minimum. The electromagnetic field created by SPR penetrates the fluidic medium and probes molecular binding processes taking place on the surface and the refractive index changes in the fluidic medium. Right: Reflectivity vs. incident angle plot shows a sharp drop in the reflection intensity due to SPR, also referred to as the SPR “dip". The angular position of the dip is often measured and used to define SPR sensitivity.

Dependence upon Prism Material
It is worth noting that the resonance angle depends not only on molecular binding and the index of refraction of the fluid medium, but also on the index of refraction of the prism and the dielectric constant of the metal film, as well as on the wavelength of light used to excite the surface plasmons. When comparing the sensitivities of different instruments in terms of degree angles, one should be aware of the prism material and the metal film, as well as the wavelength of light.

Example 1: If the prism is made of BK7 (n=1.515) glass and the wavelength of incident light is 635 nm, then the angular shift due to a protein binding layer (n= 1.5) of 3 nm on a gold sensor chip is 0.75 deg. If keeping everything the same, except replacing the BK7 glass prism with a SF10 glass (n=1.723) prism, then the same protein binding layer leads to an angular shift of 0.35 deg (a weaker response). If two instruments report the same angular shift, the one using BK7 prism is actually more sensitive in terms of measuring molecular binding.

Dependence upon Wavelength
The penetration length of the evanescent field created by SPR into the fluid medium increases with the wavelength. Longer wavelengths (e.g., near infrared) have the “seeming" advantage of being able to probe further beyond the sensor surface; however, this results in a significant loss of surface sensitivity.

Example 2 Two SPR instruments both use BK7 glass prisms, gold sensor chips, and have similar angular sensitivity, but one uses 635 nm light and the other uses 890 nm light. For a protein binding layer of 3 nm, the first instrument produces 0.75 deg angular shift, but the second instrument leads to only 0.2 deg angular shift (a much weaker response). For two instruments that have similar angular shifts, the one using 635 nm light is actually more sensitive in terms of measuring molecular binding. Although longer wavelengths allow for slightly deeper detection into the solution bulk, this results in a significantly lower sensitivity for measuring molecular binding on the sensor surface.

Example 3 Two SPR instruments claim to have similar sensitivities since they have matching values for angular sensitivity. However, one instrument uses a BK7 glass prism and 635 nm light, while the other instrument uses a SF10 glass prism and 890 nm light. For a protein binding layer of 3 nm, the first instrument produces 0.75 deg angular shift. Not surprisingly though, the second instrument results in a much weaker response of 0.15 deg angular shift. For two instruments that have similar angular sensitivity, the one using 635 nm light and BK7 glass is actually 5 times more sensitive in terms of measuring molecular binding.

Relative Index of Refraction Unit
Another quantity often used to describe SPR sensitivity is the relative change in the index of refraction of the fluid medium, known as RIU. Unlike angular shift, the unit RIU is more relevant to applications that demand an accurate measurement of the index of refraction of a bulk fluid. As a result, RIU may not be the most convenient unit for applications that aim to study molecular binding events. A relationship between RIU and angular shift in degrees is possible if one knows the exact instrumental conditions (e.g., wavelength of incident light and material of prism glass). Just like with angular shift, a SPR instrument that has the best sensitivity in terms of RIU does not always mean that it has the best sensitivity in terms of detecting molecular binding.

Example 4 If an SPR instrument uses a BK7 glass prism, gold sensor chip, and 635 nm incident light, then a 0.010 RIU change in aqueous buffer solution results in ~1.55 deg angular shift. However, this conversion between RIU and angular shift is not universal, as it depends upon the instrumental conditions (e.g., wavelength of incident light and prism material). By increasing the wavelength to 890 nm while keeping all the other experimental parameters the same, a new relation is observed in which a 0.010 RIU change in aqueous buffer solution results in a smaller ~0.99 deg angular shift. Additionally, if both the wavelength is increased to 890 nm and the prism glass is changed to SF10, then a 0.010 RIU change in aqueous buffer solution results in ~0.61 deg angular shift. Thus, the comparison of sensitivity between units of degree angular shift and RIU requires careful consideration of instrumental conditions.

Example 5 How do the following SPR instruments compare? The first instrument has a BK7 glass prism with 635 nm light and a sensitivity of 0.1 mDeg. The second instrument has a SF10 glass prism with 890 nm light and a sensitivity of 1 µRIU. From Example 4, we learned that 0.010 RIU corresponds to 0.61 deg for this configuration. Using this relationship, 1 µRIU corresponds to a sensitivity of 0.06 mDeg. Does this mean that the second instrument is more sensitive than the first? No. Remember that angular sensitivities alone do not tell the complete story. We must determine the surface binding sensitivity to make the fairest comparison. From Example 3, we learned that the configuration of the second instrument is 5 times less sensitive than the configuration of the first instrument. Thus, a sensitivity of 0.06 mDeg actually corresponds to an equivalent surface binding sensitivity of 0.3 mDeg. As a result, the first instrument is experimentally more sensitive than the second.

Surface Coverage
If one is interested in using SPR to detect molecular binding taking place on a sensor surface, then surface coverage in terms of mass, e.g., pg/mm2, is an appropriate way to define sensitivity. The unit RU (termed Resonance Unit or Response Unit) is defined as 1 RU = 1 pg/mm2, and is also often used to determine surface coverage.

However, this description cannot be used ubiquitously. For instance, SPR measures the optical polarizability, size, and density of the molecules bound to the surface, which are related to but different from an SPR measurement in terms of mass per unit surface area. The polarizability depends on the wavelength of light, especially if the wavelength is close to the optical absorption band of the molecule (e.g. chromophores, UV-vis labels, etc.). Since most proteins have similar polarizabilities, the SPR signal may be considered approximately proportional to the coverage of molecules bound to the sensor surface, and pg/mm2 is a useful way to quantify SPR sensitivity.

Example 6 A monolayer of Cytochrome c leads to an angular shift of ~0.5 Deg. The corresponding mass coverage is ~3000 pg/mm2. For an angular sensitivity of 0.1 mDeg, the corresponding mass sensitivity is 0.6 pg/mm2 or 0.6 RU.

Molar Concentration
Some vendors provide sensitivity in terms of lowest detectable molar concentration. This is a convenient and attractive measure of SPR instrument sensitivity. However, the reality is that a highly sensitive instrument cannot faithfully guarantee the detection of an extremely low analyte concentration. This is because sensitivity and detection level are two different (although related) analytical “figures of merit" [1] which are often mistakenly mixed. The lowest detectable molar concentration depends upon several significant experimental factors such as the molecular weight, optical property, and binding affinity of the analyte, as well as the surface coverage of the capture molecules. Background noise also plays a key role in determining the lowest detection level (more about this later). Molecules with large molecular weight and polarizability are easier to detect than those with small molecular weight and polarizability. A high affinity and surface coverage of the capture molecules also facilitate the detection of analyte molecules per given concentration. Additional factors that influence the lowest detectable molar concentration include sensor chip preparation (e.g., the thickness of the modifier layer and its refractive index), temperature, and buffer solution performance. Moreover, numerous experimental strategies exist that can amplify SPR binding responses (e.g., labels, competitive binding assays, enzymatic reactions, etc.). As a result, SPR sensitivity in terms of lowest detectable molar concentration can be misleading, and very unforgiving to beginning SPR users.

Example 7 A sensor chip is functionalized with 5 x 10-16 mol/mm2 anti-PNA (peanut agglutinin). PNA molecular weight is about 100 kDa, and the PNA-anti PNA equilibrium dissociation constant, K, is about 20 nM. For a SPR instrument with a sensitivity of 0.1 mDeg, or corresponding mass sensitivity of ~0.6 pg/mm2, the minimum detectable concentration will be ~0.5 nM at equilibrium. Clearly, if factors such as the surface coverage and equilibrium dissociation constant were different, then the minimum detectable concentration would also change. Thus, the evaluation of sensitivity in terms of analyte concentration should be carefully considered, keeping in mind that chip and experimental conditions play critical roles.

Determination of detection levels
The definition of “l(fā)owest detectable level" is often not clearly spelled out. The lowest detection level is largely governed by the background noise. Some choose the peak-to-peak value of the noise in the SPR signal, while others use root-mean-square or standard deviation. In analytical chemistry, an often-used definition of detection limit is three times the standard deviation of the background (blank) noise. Second, the noise of a measured physical quantity usually occurs at various time scales, so SPR sensitivity should be given together with the time scale of the measurement. Filters, such as time averaging and smoothening of data, can remove certain noises and improve the sensitivity and detection level. This practice tends to slow down the response time. One must also make sure that the response time is fast enough for an application when choosing an instrument. Third, the noise level may be influenced by electronic amplification (or gain control). A higher gain may improve signal to noise ratio, but this usually affects the dynamic range (detection range) of the instrument. Finally, when compared with imaging SPR or other pixel-based detectors, the sensitivity depends on how many pixels the SPR signal is averaged over and for how long. More pixels and more time lead to better sensitivity, but it may sacrifice spatial resolution and response time.


分享到

日韩一区二区欧美| 国产亲近乱来精品视频| 日韩一区二区高清| 动漫3d精品一区二区三区| 日本黄色动态图| 超级碰碰久久| 老汉av免费一区二区三区| 91精品国产91久久综合桃花| 国产不卡一区二区在线观看 | 天天色天天操天天射| 媚黑女一区二区| 欧美日本免费一区二区三区| 97夜夜澡人人双人人人喊| 成人免费无码大片a毛片| 99riav视频一区二区| 国产麻豆精品在线观看| 亚洲国产精品久久久久秋霞蜜臀| 欧美日韩中文国产一区发布| 国产在线免费看| 国内精品免费| 国产精品午夜在线观看| 久久久亚洲影院| 黄色av免费在线播放| 国产视频第二页| 欧美亚洲网站| 欧美一级二级三级蜜桃| 玛丽玛丽电影原版免费观看1977 | 日韩www在线| 中文字幕在线观看一区二区三区| 天堂资源在线播放| 久久久久久久久久久久久久久久久久 | 国产精品日韩一区二区| 天天操天天舔天天射| 黄色免费大全亚洲| 亚洲欧洲日韩在线| 国产91精品久久久久久| 亚洲精品在线网址| 国产91精品在线| 91麻豆国产精品久久| 久久久国产精品x99av | 青青草这里只有精品| 中文字幕亚洲一区二区av在线| 午夜精品一区二区三区在线| 色婷婷综合在线观看| 开心久久婷婷综合中文字幕| 久久久亚洲精品石原莉奈| 欧美久久精品午夜青青大伊人 | 久久天堂av| 97久久精品人人澡人人爽| 久久久国产91| 性欧美1819| 国偷自产一区二区免费视频| 成人少妇影院yyyy| 欧美成人黑人xx视频免费观看| 鲁一鲁一鲁一鲁一av| 黑人精品一区| 91日韩在线专区| 97国产精品久久| 亚洲成年人在线观看| 视频一区日韩| 一区二区三区四区高清精品免费观看| 国产精品永久在线| 欧美性受xxxx黑人| 成人三级视频| 欧美色网站导航| 午夜精品一区二区三区四区| 国产一区二区视频免费| 日韩黄色一级片| 国产亚洲欧美视频| 五月婷婷之综合激情| 成人不卡视频| 中文字幕精品—区二区四季| 国产成人一区二| 自拍偷拍亚洲天堂| 激情五月色综合国产精品| 色哟哟欧美精品| 日韩国产美国| 在线观看一二三区| 国产一区二区三区观看| 欧美激情精品久久久久久久变态 | 91在线国产观看| 午夜精品在线观看| 91视频免费观看网站| 成人同人动漫免费观看| 制服丝袜国产精品| 青青青在线观看视频| 天天操天天舔天天干| 久久精品日产第一区二区三区高清版 | 亚洲区一区二区三区| 亚洲中文字幕在线一区| 国产一区二区三区四区五区入口 | 不许穿内裤随时挨c调教h苏绵| 久久99精品久久久久久欧洲站| 精品成人乱色一区二区| 日本在线免费观看一区| 97超碰中文字幕| 成人网页在线观看| 国产成人精品在线播放| 91制片厂在线| 亚洲黄色天堂| 在线播放日韩欧美| 精品国产午夜福利在线观看| 欧美18免费视频| 精品视频一区三区九区| 精品嫩模一区二区三区| 成人一区福利| 亚洲美女一区二区三区| 久久久久久艹| 99久久精品国产一区色| 久久综合九色欧美综合狠狠 | 欧美一级在线视频| 国产一区二区网| 伊人国产精品| 疯狂蹂躏欧美一区二区精品| 亚洲欧美丝袜| 黄色片网站免费在线观看| 欧美国产亚洲另类动漫| 国产精品视频入口| 在线观看免费中文字幕| 91视频在线观看免费| 成人午夜小视频| 国产精品老女人| 国产一区二区三区蝌蚪| 国产精品狠色婷| 久久久久成人精品无码| 免费在线成人网| 午夜精品久久久久久久久久久久久| 成人免费视频入口| 亚洲欧美日韩综合国产aⅴ| 欧美成人小视频| 国产一二三四区在线| 亚洲免费中文| 久久久久久综合网天天| 永久免费看片直接| 男女男精品网站| 欧美专区日韩视频| 国产一级片久久| 狠狠色综合色综合网络| 国产精品视频999| 日韩精品在线免费视频| 成人av电影免费观看| 91在线观看免费观看| 综合久久中文字幕| 国产色91在线| 久久日韩精品| 色偷偷在线观看| 亚洲制服丝袜av| 大片在线观看网站免费收看| 亚洲tv在线| 欧美日韩精品三区| 亚洲色图久久久| 国产一区二区三区探花| 亚洲欧美一区二区三区在线| 韩国无码一区二区三区精品| 中文日韩欧美| 91精品国产91久久久| 日韩黄色精品视频| av亚洲精华国产精华精华| 草莓视频一区| 亚洲成人中文字幕在线| 亚洲一区二区三区自拍| av片在线免费| 久久av国产紧身裤| 亚洲精品美女久久久久| 免费的av网站| 久久永久免费| 国产精品男人的天堂| 欧美 亚洲 另类 激情 另类| 国产精品乱码久久久久久| 一本一本a久久| 国产一区二区三区| 欧美一级艳片视频免费观看| 精品人妻二区中文字幕| 国产精品丝袜xxxxxxx| 欧美在线视频网站| 亚洲大尺度在线观看| 中文字幕精品一区| 可以在线看黄的网站| 国产成人高清精品免费5388| 亚洲国产精品va在线看黑人动漫| 粉嫩av懂色av蜜臀av分享| 亚洲一区日本| 国产精品白嫩美女在线观看| 亚洲精品一区二区二区| 18成人在线观看| 大胆欧美熟妇xx| 欧美美女在线直播| 中文字幕欧美视频在线| 少妇高潮一区二区三区喷水| 国产黄色精品网站| 好吊色欧美一区二区三区视频| 最新欧美电影| 在线成人免费视频| 日批免费观看视频| 日日摸夜夜添夜夜添国产精品| 国产精品视频网站| www.国产精品视频| 色婷婷av一区二区三区之一色屋| 2025韩国理伦片在线观看| 欧美天天在线| 人九九综合九九宗合| 国产尤物在线观看| 黄色一区二区三区| 91国内在线播放| 国产精品久久久久久模特| 国产精品免费一区| 特黄aaaaaaaaa真人毛片| 欧美三级电影在线观看| 亚洲少妇一区二区三区| 蜜桃一区二区三区在线观看| 国产伦精品一区二区三毛| 成人国产综合| 亚洲电影免费观看| 美女网站视频色| 99久免费精品视频在线观看| 天天做天天爱天天高潮| 久久99性xxx老妇胖精品| 美日韩精品免费观看视频| 四虎精品永久在线| 一区二区三区免费在线观看| 国产情侣av自拍| 99亚洲视频| 亚洲自拍偷拍第一页| 日本综合视频| 亚洲国产美女精品久久久久∴| 免费黄色激情视频| 久久久不卡网国产精品一区| 男人的天堂avav| 99视频精品全部免费在线视频| 浅井舞香一区二区| 国模无码一区二区三区| 欧美日韩中文另类| 日韩中文字幕电影| av午夜一区麻豆| 欧美日韩视频免费| 欧美激情1区2区3区| 国产精品男人的天堂| 欧美成人a交片免费看| 亚洲精品在线电影| 九九热国产精品视频| 亚洲天堂精品在线观看| 国产成人黄色网址| 日韩成人av影视| 久久艳妇乳肉豪妇荡乳av| 国产精品网站在线看| 久久99亚洲热视| 精品国产亚洲av麻豆| 91精品国产入口在线| 精品少妇一区二区三区密爱| 国产精品丝袜91| 午夜视频你懂的| 欧美a级理论片| 欧美一区1区三区3区公司| 亚洲视频分类| 日本精品中文字幕| 日韩电影免费观看高清完整版| 日韩精品免费视频| 中国一级免费毛片| 欧美午夜美女看片| 三上悠亚影音先锋| 国产肉丝袜一区二区| 日韩av片网站| 精品一区二区三区在线播放| 亚洲一区在线免费| 国产精品99在线观看| 成人黄色在线播放| 日本99精品| 久久久人成影片一区二区三区观看 | 国产欧美日韩中文久久| 欧美日韩亚洲自拍| 国产一区二区久久| h无码动漫在线观看| 亚洲激情黄色| 欧美一区国产一区| 色婷婷亚洲mv天堂mv在影片| 91中文在线视频| 国产无遮挡裸体免费久久| 668精品在线视频| 日本少妇一区| 少妇高潮久久77777| 国产女18毛片多18精品| 日韩欧美激情一区| 日韩手机在线观看| 日本韩国视频一区二区| 国产精品视频看看| 亚洲国产欧美日韩另类综合| av鲁丝一区鲁丝二区鲁丝三区| 国产欧美一区二区精品性色| 天天综合成人网| 99久久国产综合色|国产精品| 99精品免费在线观看| 精品一区二区久久| 九九爱精品视频| 日本成人在线视频网站| 日韩人妻一区二区三区蜜桃视频| 亚洲乱码视频| 日韩三级电影网站| 欧美日韩三区| 久久综合福利| 亚洲激情中文| 精品一区在线播放| 久久久久久久久国产一区| 久久99久久精品国产| 我不卡影院28| 麻豆成人小视频| 欧美一区二区三区久久精品| 国产一区二区三区四区五区加勒比| 国产aⅴ精品一区二区三区久久| 91在线观看免费高清| 国内成人自拍| 国产乱码精品一区二区三区中文| 欧美一区二区麻豆红桃视频| 国产精品国产三级欧美二区 | av观看久久| 精品国产1区| 国产99在线播放| 91精品蜜臀一区二区三区在线| 免费亚洲一区二区| 在线一区电影| 天天好比中文综合网| 国产视频欧美| 免费看日b视频| 激情综合一区二区三区| 亚洲成熟丰满熟妇高潮xxxxx| 成人爱爱电影网址| 五月六月丁香婷婷| 国产精品视频一二三| 亚洲专区区免费| 亚洲成人一区二区在线观看| 国产67194| 欧美区在线观看| 波多野结衣电车痴汉| 亚洲第一天堂无码专区| 亚洲AV无码国产精品午夜字幕| 日韩在线观看高清| 小明成人免费视频一区| 69av成年福利视频| 国产精品久久久久av蜜臀| 亚洲sss综合天堂久久| 天天射成人网| 国产a级片免费看| 麻豆一区二区在线| 亚洲xxxx2d动漫1| 亚洲国产成人午夜在线一区| 国产视频三区四区| 在线观看区一区二| 人妻 日韩精品 中文字幕| 精品视频—区二区三区免费| 丰满肥臀噗嗤啊x99av| 久久久久久伊人| 欧美激情影院| 精品国产乱码一区二区三区四区| 99精品国产在热久久| 亚洲人精品午夜射精日韩| 9色porny自拍视频一区二区| 妖精视频一区二区| 亚洲va国产天堂va久久en| 伊人国产在线观看| 日韩av在线最新| av电影一区| 日本久久91av| 青青草综合网| 一区二区三区我不卡| 国产在线国偷精品产拍免费yy| 日韩 国产 一区| 亚洲一区二区三区视频在线| 国产 日韩 欧美 成人| 亚洲国产精品大全| 桃花岛tv亚洲品质| 国产乱肥老妇国产一区二| 亚洲成人二区| 日本黄色片一级片| 91在线观看免费视频| 欧洲av一区二区三区| 欧美日本乱大交xxxxx| www.久久综合| 国产69久久精品成人| 欧美日韩有码| 最新av在线免费观看| 成人午夜视频福利| 国产交换配乱淫视频免费| 欧美日本在线观看| 国产91免费在线观看| 国产成人精品视频在线| 91精品亚洲| 日韩伦理在线免费观看| 欧美国产一区在线| 久久久久亚洲av成人片| 国产亚洲精品综合一区91| 日本成人手机在线| 欧美一区亚洲二区| 国产精品一区二区无线| 国产精品九九九九九| 欧美日韩成人综合| 好男人www在线视频| 国产精品久久久久久影视| 伊人成人在线| 99日在线视频| 日韩欧美在线免费| av综合在线观看|